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ABSTRACT 
In spite of being an effective image segmentation algorithm, the standard fuzzy c-means (FCM) is very sensitive to 

Rician noise and outliers in images. Thus, segmentation with FCM becomes problematic for brain magnetic 
resonance (MR) images where we need to segment tissues such as cerebrospinal fluid (CSF), gray matter (GM) and 

white matter (WM) from these images. Various FCM algorithms have been extended to their kernelized versions to 

make them enough robust to noise, outliers and other imaging artifacts and to reveal non-Euclidean structure of 

input data.  This paper presents a comparative performance analysis of brain MRI segmentation methods based on 

kernelized FCM using performance measures such as jaccard similarity (JS) and similarity index(𝜌). 

 

Keywords: image segmentation; fuzzy c-means; magnetic resonance (MR) images; imaging artifacts. 

 

I. INTRODUCTION 
 

Image segmentation is the foremost and very challenging task in image analysis. It partitions an image into several 

non-overlapping groups or regions having similar features or homogeneous characteristics. It is a very helpful tool in 

many fields including image processing, traffic analysis, health care, pattern recognition etc.  

 

The segmentation of magnetic resonance (MR) images has a significant application in the field of biomedical image 

processing. It facilitates the description of anatomical structures and other regions of interest.  In bio-medical 

analysis, the structure of the brain is closely observed through MR images and the focus is on the identification of 

tumors, classification of tissues and blood cells, etc. In brain tumor, segmentation consists of segmenting the 

abnormal tissues from normal tissues such as cerebrospinal fluid (CSF), gray matter (GM) and white matter (WM). 

Manual description of these tissues is very tedious task and requires involvement of expert(s) to draw the boundaries 

of the tissues. So, there is a need of a computer based system for effective segmentation of brain MR images is to 
detect the abnormalities in the brain of a patient being examined and ultimately leading to treatment of disease.  

 

There are various brain imaging techniques like computed tomography (CT), position emission tomography (PET) 

and MR imaging (MRI). Although all these imaging techniques provide valuable information about anatomical 

structure of the brain but MRI is the best technique for the diagnosis of diseases. This imaging technique does not 

cause any radiation damage to the internal tissues of the patient's body as it does not use harmful rays such as X-rays 

or radioactive material.  

 

Post processing of Brain MR Images needs few algorithms to extract the particular information from these MRI. 

Several automated segmentation techniques have been developed such as threshold based, region growing, cluster 

based etc. In General, image segmentation is a clustering of the pixels in the image according to some predefined 
criteria. Hence the clustering techniques can be easily applied to MR images for their segmentation and these 

algorithms are very efficient in their work. In the case of clustering, the similar data samples or pixels in the image 

are grouped into one cluster. Generally, clustering can be partitioned into two categories [1], hard clustering and soft 

clustering. In hard clustering, each data object is assigned to exactly one cluster, but in soft clustering (also is called 

fuzzy clustering) each data object belongs to each cluster to a certain degree. k-means [2] and fuzzy c-means (FCM) 

[3] algorithms are the most popular clustering algorithms. In k-means (which is based on hard clustering), the 

partitions are optimized by minimizing the total distance within the clusters and every data point either belongs to a 

certain cluster or not. Relying on the basic idea of k-means, FCM also designs an objective function to perform a 
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fuzzy partitioning such that the given data point can belong to several partitions or groups with varying degree of 

membership. However, both k-means and FCM are sensitive to noise, outliers and other imaging artifacts due to not 
considering any spatial information in the image. To overcome this sensitivity, the spatial information is introduced 

in the algorithm which is derived from the neighborhood of the pixels in the image [4]. The objective function of 

FCM is modified by incorporating a spatial neighborhood term and FCM algorithm with spatial information 

(FCM_S) is proposed. Additionally, two variants of FCM_S [5] called FCM_S1 and FCM_S2 are presented to 

reduce the computational complexity of FCM_S. Furthermore, a kernel-induced distance [5,6] is utilized to replace 

the Euclidean distance of FCM based algorithms and then kernel versions of FCM_S, FCM_S1 and FCM_S2 called 

KFCM_S, KFCM_S1 and KFCM_S2 respectively, are presented. To speed up the image segmentation process of 

FCM with spatial information, an enhanced fuzzy c-means (EnFCM) [7] clustering algorithm is produced in which a 

linearly-weighted sum image is introduced. Like EnFCM, a fast-generalized fuzzy c-means (FGFCM) [8] clustering 

algorithm is proposed in which a non-linearly-weighted sum image is defined. These two weighted sum images in 

EnFCM and FGFCM are computed by using the neighborhood of the pixel. Aiming at the problems in FGFCM, one 
parameter-free algorithm fuzzy local information C-means (FLICM) [9] is introduced in which a novel fuzzy factor 

is defined to replace the parameter in FGFCM. Furthermore, kernelized weighted fuzzy local information C-means 

algorithm (KWFLICM) [10] introduced a trade-off weighted fuzzy factor and kernel distance measure to further 

enhance the performance of FLICM.  

 

The rest of this paper is organised as follows:In Section 2, Kernelized fuzzy c-means clustering algorithms (KFCM, 

KFCM_S, KFCM_S1 and KFCM_S2) are introduced, followed by the KWFLICM algorithm. The experimental 

comparisons are presented in Section 3. Finally, Section 4 gives our conclusions and future work. 

 

II. ANALYSIS OF EXISTING WORK 
 

2.1 Kernelized Fuzzy C-Means (KFCM)  

Classical fuzzy c-means (FCM) [3] clustering has been proven effective for clusters with spherical shape only. So, 

kernelized fuzzy c-means algorithm (KFCM) [6] was introduced to deal with other non-spherical shaped clusters. 

KFCM performs a nonlinear input space mapping to a high dimensional feature space. The mapping consumes very 

much time so; Mercer kernel functions are used that generate kernel induced distance to replace Euclidean distance 

in FCM algorithm.  

 

A kernel in a high dimensional feature space is represented by a function 𝐾 as: 

 𝐾(𝑥, 𝑦) = 〈𝜑(𝑥), 𝜑(𝑦)〉 (1) 

where 𝜑(. ) is an implicit nonlinear map. The most commonly used kernel function is gaussian radial basis function 

(GRBF) which is given below: 
 

 𝐾(𝑥, 𝑦) = 𝑒𝑥𝑝 (
−‖𝑥 − 𝑦‖2

𝜎2
) 

(2) 

where 𝜎 is an adjustable parameter of GRBF. 

The objective function of classical FCM is given by: 
 

 𝐽𝑚 = ∑ ∑ 𝜇𝑗𝑖
𝑚𝑑𝑗𝑖

2 (𝑥𝑖 , 𝑣𝑗)

𝑐

𝑗=1

𝑁

𝑖=1

 

(3) 

where,  𝑑𝑗𝑖is the Euclidean distance measure between object 𝑥𝑖 and cluster center 𝑣𝑗. 

  𝑑𝑗𝑖 = ‖𝑥𝑖 − 𝑣𝑗‖ (4) 

𝑋 = {𝑥1, 𝑥2 … . 𝑥𝑛} is a data set in the m-dimensional vector space,µ
𝑗𝑖

is the fuzzy membership matrix of 𝑥𝑖 with 

𝑗𝑡ℎcluster, 𝑚 is the fuzzification parameter, 𝑣𝑗 is the prototype of the center of cluster 𝑗. 

Using (1), objective function of FCM is modified as follows: 
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 𝐽𝑚
𝜑

= ∑ ∑ 𝜇𝑗𝑖
𝑚‖𝜑(𝑥𝑖) − 𝜑(𝑣𝑗)‖

2
𝑐

𝑗=1

𝑁

𝑖=1

 

(5) 

 

(5) 

By kernel substitution, 

 
‖𝜑(𝑥𝑖) − 𝜑(𝑣𝑗)‖

2
= (𝜑(𝑥𝑖) − 𝜑(𝑣𝑗))

𝑇

(𝜑(𝑥𝑖) − 𝜑(𝑣𝑗)) 
 

                                 = 𝜑(𝑥𝑖)
𝑇𝜑(𝑥𝑖) − 𝜑(𝑣𝑗)

𝑇
𝜑(𝑥𝑖) 

                                        −𝜑(𝑥𝑖)
𝑇𝜑(𝑣𝑗) + 𝜑(𝑣𝑗)

𝑇
𝜑(𝑣𝑗) 

                             =  𝐾(𝑥𝑖 , 𝑥𝑖)𝐾(𝑣𝑗 , 𝑣𝑗) − 2𝐾(𝑥𝑖 , 𝑣𝑗) (6) 

Using GRBF, (5) can be rewritten as follows: 

 

 𝐽𝑚
𝜑

= 2 ∑ ∑ 𝜇𝑗𝑖
𝑚 (1 − 𝐾(𝑥𝑖 , 𝑣𝑗))

𝑐

𝑗=1

𝑁

𝑖=1

 
(7) 

The necessary conditions for minimizing (7) are the following equations: 

 

𝜇𝑗𝑖 =
(1 − 𝐾(𝑥𝑖 , 𝑣𝑗))

−1 (𝑚−1)⁄

∑ (1 − 𝐾(𝑥𝑖 , 𝑣𝑘))
−1 (𝑚−1)⁄𝑐

𝑘=1

 

(8) 

 

 
𝑣𝑗 =

∑ µ
𝑗𝑖
𝑚𝐾(𝑥𝑖 , 𝑣𝑗)𝑥𝑖

𝑁
𝑗=1

∑ µ
𝑗𝑖
𝑚𝑁

𝑗=1 𝐾(𝑥𝑖 , 𝑣𝑗)
 

(9) 

 

KFCM algorithmis given as follows: 

Step1: Set the values of various parameters such as number 𝑐 of the cluster prototypes, fuzzification parameter 𝑚 >
1, termination condition  𝜀 and the total number of iterations 𝑛. 

Step2: Initialize the set of random cluster centres 𝑉 = [𝑣1, 𝑣2, … . , 𝑣𝑐]and set 𝜀 > 0 to a very small value. 

Step3: Compute the fuzzy membership matrix  µ
𝑗𝑖 

using (8). 

Step4: Update new cluster centers𝑣𝑗 using (9). 

Repeat Steps 3 and 4 until the following termination criterion is satisfied: 

 𝑉𝑛𝑒𝑤 − 𝑉𝑜𝑙𝑑 < 𝜀  
 

 

2.2 Kernelized Fuzzy C-Means with Spatial Constraints (KFCM_S) and its Variants 
Aiming at simplicity of computations and improvement in clustering results, FCM_S [5] is extended to its 

kernelized version KFCM_S [5,6]. The objective function of FCM_S is given as below: 

 

   𝐽𝑚 = ∑ ∑µ
𝑗𝑖
𝑚 ||𝑥𝑖 − 𝑣𝑗||

2

+
𝑎

𝑁𝑅

∑ ∑ µ
𝑗𝑖
𝑚 ∑ ||𝑥𝑟 − 𝑣𝑗||

2

𝑟∈𝑁𝑖

𝑐

𝑗=1

𝑁

𝑖=1

𝑐

𝑗=1

𝑁

𝑖=1

 

 

(10) 

 

By incorporation of kernel function, the updated objective function of KFCM_S is given as below: 

 

𝐽𝑚 = ∑ ∑ 𝜇𝑗𝑖
𝑚 (1 − 𝐾(𝑥𝑖 , 𝑣𝑗))

𝑐

𝑗=1

𝑁

𝑖=1

+
𝑎

𝑁𝑅

∑ ∑µ
𝑗𝑖
𝑚 ∑ (1 − 𝐾(𝑥𝑟 , 𝑣𝑗))

𝑟∈𝑁𝑖

𝑐

𝑗=1

𝑁

𝑖=1

 

 

 

(11) 

where 𝑥𝑖 is the grey value of the 𝑖𝑡ℎ pixel, 𝑣𝑗 represents the 𝑗𝑡ℎ cluster, µ
𝑗𝑖

 represents the fuzzy membership value of 

𝑖𝑡ℎpixel with 𝑗𝑡ℎ cluster, 𝑥𝑟are the neighbors of 𝑥𝑖, parameter 𝑎is the regularization parameter which controls the 

effect of the penalty term,𝑁𝑖 stands for the set of neighbour pixels that exist in a window around 𝑥𝑖 (excluding 𝑥𝑖) 

and 𝑁𝑅 is the cardinality of 𝑁𝑖. 

 

For minimizing (11), this iterative algorithm computes the membership matrix µ
𝑗𝑖

and the cluster center 𝑣𝑗 as 

follows: 
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𝜇𝑗𝑖 =

((1 − 𝐾(𝑥𝑖 , 𝑣𝑗)) +  
𝛼

𝑁𝑅
∑ (1 − 𝐾(𝑥𝑟 , 𝑣𝑗))

𝑚

𝑟∈𝑁𝑖
)

−1

𝑚−1

∑ ((1 − 𝐾(𝑥𝑖 , 𝑣𝑘)) +  
𝛼

𝑁𝑅
∑ (1 − 𝐾(𝑥𝑟 , 𝑣𝑘))

𝑚

𝑟∈𝑁𝑖
)

−1

𝑚−1
𝑐
𝑘=1

 

 

(12) 

 

𝑣𝑗 =
∑ µ

𝑗𝑖
𝑚 (𝐾(𝑥𝑖 , 𝑣𝑗)𝑥𝑖 +

𝑎

𝑁𝑅
∑ 𝐾(𝑥𝑟 , 𝑣𝑗)𝑥𝑟𝑟∈𝑁𝑖

)𝑁
𝑖=1

∑ µ
𝑗𝑖
𝑚𝑁

𝑖=1 (𝐾(𝑥𝑖 , 𝑣𝑗) +
𝑎

𝑁𝑅
∑ 𝐾(𝑥𝑟 , 𝑣𝑗)𝑟∈𝑁𝑖

)
 

 

(13) 

The neighbourhood information has to be computed at each iteration which is very time consuming process. To 

reduce the computation time of KFCM_S, Chen and Zhang proposed its two variants [6], named 

KFCM_S1andKFCM_S2. Kernel implication to FCM_S1 and FCM_S2 modifies the objective function from (14) to 

(15) as follows: 

 
𝐽𝑚 = ∑ ∑µ

𝑗𝑖
𝑚 ||𝑥𝑖 − 𝑣𝑗||

2

+

𝑐

𝑗=1

𝑁

𝑖=1

𝑎 ∑ ∑ µ
𝑗𝑟
𝑚 ||�̅�𝑟 − 𝑣𝑗||

2

𝑟𝜖𝑁𝑖

𝑐

𝑗=1

 
(14) 

 

 𝐽𝑚 = ∑ ∑ 𝜇𝑗𝑖
𝑚 (1 − 𝐾(𝑥𝑖 , 𝑣𝑗)) + 𝑎 ∑ ∑ µ

𝑗𝑖
𝑚 (1 − 𝐾(�̅�𝑟 , 𝑣𝑗))

𝑐

𝑗=1

𝑁

𝑖=1

𝑐

𝑗=1

𝑁

𝑖=1

 
(15) 

The membership matrix µ
𝑗𝑖

and cluster center 𝑣𝑗 are calculated by equations given as follows: 

 

 𝜇𝑗𝑖 =
((1 − 𝐾(𝑥𝑖 , 𝑣𝑗)) + 𝛼 (1 − 𝐾(�̅�𝑖 , 𝑣𝑗)))

−1

𝑚−1

∑ ((1 − 𝐾(𝑥𝑖 , 𝑣𝑘)) + 𝛼(1 − 𝐾(�̅�𝑖 , 𝑣𝑘)))

−1

𝑚−1𝑐
𝑘=1

 

 

(16) 

 
𝑣𝑗 =

∑ µ
𝑗𝑖
𝑚(𝐾(𝑥𝑖 , 𝑣𝑗)𝑥𝑖 + 𝛼𝐾(�̅�𝑖 , 𝑣𝑗)�̅�𝑖)

𝑁
𝑖=1

∑ µ
𝑗𝑖
𝑚𝑁

𝑖=1 (𝐾(𝑥𝑖 , 𝑣𝑗) + 𝛼𝐾(�̅�𝑖 , 𝑣𝑗))
 

(17) 

For KFCM_S1, �̅�𝑖 represents the mean-filtered image and for KFCM_S2, �̅�𝑖 represents the median-filtered image. 

To speed up the clustering process, �̅�𝑖 is computed in advance. 
 

2.3 Kernelized Weighted Fuzzy Local Information C-means (KWFLICM) 
Gong et al. presented the KWFLICM algorithm [10] by combining the kernel metrics and weighting factor on 

FLICM [9] to provide better and effective segmentation results and noise immunity. The objective function of 

FLICM is given below: 

 

 𝐽𝑚 = ∑ ∑ [µ
𝑗𝑖
𝑚 ||𝑥𝑖 − 𝑣𝑗||

2

+ 𝐺𝑗𝑖]

𝑐

𝑗=1

𝑁

𝑖=1

 

 

(18) 

 

Addition of kernel metric to FLICM, updated the objective function in the following manner. 

 

 𝐽𝑚 = ∑ ∑µ
𝑗𝑖
𝑚 (1 − 𝐾(𝑥𝑖 , 𝑣𝑗)) + 𝐺′𝑗𝑖

𝑐

𝑗=1

𝑁

𝑖=1

 

 

(19) 
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  𝐺′𝑗𝑖 = ∑ 𝑤𝑖𝑘 (1 − µ
𝑗𝑘

)
𝑚

(1 − 𝐾(𝑥𝑘, 𝑣𝑗))
𝑘∈𝑁𝑖
𝑖≠𝑘

 

 

(20) 

 

where 𝐾(𝑥, 𝑦), 𝑣𝑗 and µ
𝑗𝑖

are defined as same as before, 𝑁𝑖 is the set of neighbors in a window around 𝑥𝑖,(1 −

µ
𝑗𝑘

)
𝑚

 is a penalty which can accelerate the iterative convergence to some extent. 𝑤𝑖𝑘 is the trade-off weighted 

fuzzy factor of  𝑘𝑡ℎin a local window around 𝑥𝑖 defined below: 

  𝑤𝑖𝑘 = 𝑤𝑠𝑐 . 𝑤𝑔𝑐  (21) 

where 𝑤𝑠𝑐  is the damping extent of the neighbor pixels from the central pixel and it is defined as 

  𝑤𝑠𝑐 = 1
(𝑑𝑖𝑘 + 1)⁄  

 

(22) 

 

where 𝑑𝑖𝑘  is the spatial Euclidean distance between the 𝑘𝑡ℎ pixel in neighbors and the central pixel. And for 𝑤𝑔𝑐 , we 

need to follow some computations given below: 

 
 𝐶𝑘 =

𝑣𝑎𝑟(𝑥)

(�̅�)2
 

 

(23) 

 

 
�̅� =

∑ 𝑥𝑖
𝑁
𝑖=1

𝑁
 

 

(24) 

 

 
𝑣𝑎𝑟(𝑥) =

∑ (𝑥𝑖 − �̅�)2𝑁
𝑖=1

𝑁
 

 

(25) 

 

where 𝑣𝑎𝑟(𝑥) and �̅� are the intensity variance and mean in a local window of the image, respectively and  𝐶𝑘 itself 

is the local coefficient of variation. Next we project 𝐶𝑘 into kernel space and calculate �̅� i.e. mean of 𝐶𝑘 in local 

window. 

 
�̅� =

∑ 𝐶𝑘𝑘∈𝑁𝑖

𝑛𝑖

 

 

(26) 

 

where 𝑛𝑖 is the local cardinality.  

 𝜉𝑖𝑘 = 𝑒𝑥𝑝[−(𝐶𝑘 − �̅�)],               𝑘 ∈ 𝑁𝑖 
 

(27) 

 

 
𝜂𝑖𝑘 =

 𝜉𝑖𝑘

∑ 𝜉𝑖𝑗𝑗∈𝑁𝑖

 

 

(28) 

 

 
 𝑤𝑔𝑐 = {

 2 + 𝜂𝑖𝑘 ,        𝐶𝑘 < �̅�

2 − 𝜂𝑖𝑘 ,        𝐶𝑘 ≥ �̅�
 

 

(29) 

 

where constant 2 guarantees the weight 𝑤𝑔𝑐  is non-negative. The two updated formulas for minimizing objective 

function, with respect to µ
𝑗𝑖

 and 𝑣𝑗 is obtained as follows: 

 

 µ
𝑗𝑖

=
((1 − 𝐾(𝑥𝑖 , 𝑣𝑗)) + 𝐺𝑗𝑖)

−1/(𝑚−1)

∑ ((1 − 𝐾(𝑥𝑖 , 𝑣𝑘)) + 𝐺𝑘𝑖)
−1/(𝑚−1)

𝑐
𝑘=1

 

 

(30) 

 

 
 𝑣𝑗 =

∑ µ
𝑗𝑖
𝑚𝐾(𝑥𝑖 , 𝑣𝑗)𝑥𝑖

𝑁
𝑖=1

∑ µ
𝑗𝑖
𝑚𝐾(𝑥𝑖 , 𝑣𝑗)𝑁

𝑖=1

 

 

(31) 
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III. EXPERIMENTAL RESULTS 
 

This section portrays some experimental results on brain MRI images to show the segmentation performance of 

various kernelized FCM algorithms. We try to have experimental results for KFCM, KFCM_S, KFCM_S1, 

KFCM_S2 and KWFLICM. Furthermore, we compare the performance efficiency of all these segmentation 

methods. The segmentation performance is evaluated quantitatively by using two measures i.e. jaccard similarity 

(JS) and similarity index (𝜌) [3].  

 

JS is the ratio between intersection (number of common pixels) and union (number of identical pixels) of the 

segmented class and ground truth class. It is the indication of similarity between Igtand Iseg, and defined as: 

 
𝐽𝑆 =

𝐼𝑔𝑡 ∩ 𝐼𝑠𝑒𝑔

𝐼𝑔𝑡 ∪ 𝐼𝑠𝑒𝑔

 

 

(32) 

 

where,Igt represents the set of pixels in ground truth image and Iseg represents the set of pixels in segmented 

image.The segmented output image is compared with its corresponding ground truth image and the similarity within 

each cluster is calculated. 

 Similarity index (𝜌)is another important measure which not only considers similar pixels, but also the 

contribution of the dissimilar pixels towards its value. It provides the overall segmentation accuracy for all the 

classes. It is defined as:  

 
𝜌 = 2 ×

𝐼𝑔𝑡 ∩ 𝐼𝑠𝑒𝑔

𝐼𝑔𝑡 + 𝐼𝑠𝑒𝑔

 

 

(33) 

 

where,
gtI and 

segI  defined as same as in JS. The value of JS and 𝜌 ranges from 0 to 1, with a value near to one 

indicates more accurate segmentation. If the values of these parameters are near to zero, it means there are a lesser 

number of common pixels between the segmented output image and the corresponding segmented ground truth 

image. The value near to one indicates more accurate segmentation.  

 

In our experiments, we apply these segmentation methods to a medical image i.e. brain MR image of size  181 ×
217. The image includes four clusters with the corresponding gray values taken as 0, 85, 170 and 255. The 80th slice 

of simulated brain MR image with 9% Rician noise, ground truth image and segmentation results using various 

segmentation methods are shown in Fig. 1. Table 1 and Table 2 provide the comparison of different algorithms 

quantitatively in terms of JS and 𝜌 respectively. 

 

 
                                         (a)                            (b)                          (c)                          (d) 
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                                                (e)                           (f)                           (g)                

Fig. 1 (a) Input image (b) Ground truth image (c) KFCM result (d) KFCM_S result (e) KFCM_S1 result (f) KFCM_S2 result 

(g) KWFLICM result. 

 
Table 1.  Segmentation evaluation with jaccard similarity. 

Brain tissues KFCM KFCM_S KFCM_S

1 

KFCM_S

2 

KWFLIC

M 

CSF 70.61 71.43 73.20 73.73 76.90 

GM 74.17 70.36 72.60 72.75 83.16 

WM 74.37 74.37 76.46 76.31 86.96 

 
Table 2.  Segmentation evaluation with similarity index. 

KFCM KFCM_S KFCM_S

1 

KFCM_S

2 

KWFLIC

M 

87.50 87.69 88.72 88.81 92.58 

 

Table1 illustrates the superior segmentation results of KWFLICM for CSF, GM and WM. In general, MR images 

are contaminated with Rician noise. So, to further test the performance of segmentation algorithms we apply these 

algorithms on simulated 80th brain slice with different noise levels 3%, 5%, 7% and 9%. We use 𝛼 = 0.1 and 𝜎 =
45.0 in the experiments. 

 
Fig. 2 Segmentation Accuracy (JS) (%) on CSF 
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Fig. 3 Segmentation Accuracy (JS) (%) on GM 

 
Fig. 4 Segmentation Accuracy (JS) (%) on WM 

 

Fig. 2, 3 and 4 show the segmentation results for MR image having different noise levels on CSF, GM and WM 
regions respectively. 
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Fig. 4 Similarity Index (𝝆) (%) 

 

IV. CONCLUSION 
 

We present a comparative study and performance analysis of kernelized fuzzy c- means based segmentation 

methods for brain MR images. The performance evaluation parameters are JS and 𝜌. Unlike KFCM, KFCM_S, 

KFCM_S1 and KFCM_S2, KWFLICM can overpower the effect of noise. Although, as the noise increased in the 

image, segmentation results get worse but in comparison with several state-of-the-art methods, KWFLICM gives 
better results for high noisy images. For example for noise level 9%, KWFLICM gives highest segmentation 

performance for both the performance metrics (JS and 𝜌). 
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